First-principles studies of spin-state crossovers of iron in perovskite

نویسندگان

  • RENATA M. WENTZCOVITCH
  • HAN HSU
  • KOICHIRO UMEMOTO
چکیده

The discovery of spin crossovers in iron under pressure in ferropericlase and iron-bearing magnesium silicate perovskite, the major mineral phases of the Earth’s lower mantle, ignited in the last eight years intense discussions on the nature of this phenomenon and potential effects on the state and evolution of the Earth’s mantle and of the planet as a whole. The nature of spin crossover in ferropericlase is better understood, and consensus on the interpretation of experimental data has been essentially achieved. However, in perovskite numerous experiments and computations have been carried out, often giving different results or suggesting different interpretations. Perovskite is a much more challenging system to investigate for a couple of reasons: there are two types of iron, ferrous (Fe) and ferric (Fe), more than one site can be occupied by iron, the A and B perovskite sites (as in ABX3), and experiments do not probe the spin state unambiguously. Calculations are also especially difficult. This type of problem has challenged condensed matter theorists for decades. In addition, novel density functional theory þ Hubbard U (DFTþU) electronic structure techniques, sometimes previously untested, are being used to address this type of problem. In summary, the challenge is multi-faceted. Here we review a series of calculations that have succeeded in reproducing experimental data and have been essential for their interpretation. They used the recently developed DFTþUsc method where the Hubbard U is obtained self-consistently by first principles. In particular, the electric field gradients (EFGs) at the nucleus of iron and thus quadrupole splittings (QSs) have been successfully computed, making direct comparisons between measured (via Mössbauer spectroscopy) and computed QSs for various spin states possible. This strategy led to unexpected findings in (Mg1-xFex)SiO3 and in (Mg1-xFex)(Si1-xFex)O3 (x = 0.125): in the pressure range of the lower mantle a) ferrous iron in the A site undergoes a site change, not a spin-state change and b) in ferric iron, spin crossover happens only in the B-site. Key-words: spin crossover, perovskite, lower mantle, quadrupole splitting, Mössbauer spectroscopy, DFTþU.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First-principles study of spin-state crossovers and hyperfine interactions of ferric iron in magnesium silicate perovskite1

Submitted for the MAR11 Meeting of The American Physical Society Sorting Category: 19.1 (C) First-principles study of spin-state crossovers and hyperfine interactions of ferric iron in magnesium silicate perovskite1 HAN HSU, University of Minnesota, PETER BLAHA, TU Vienna, MATTEO COCOCCIONI, RENATA WENTZCOVITCH, University of Minnesota — The spin-state crossover in iron-bearing MgSiO3 perovskit...

متن کامل

Spin states and hyperfine interactions of iron in (Mg,Fe)SiO3 perovskite under pressure

a r t i c l e i n f o Keywords: spin crossover intermediate spin quadrupole splitting iron-bearing perovskite lower mantle With the guidance of first-principles phonon calculations, we have searched and found several metastable equilibrium sites for substitutional ferrous iron in MgSiO 3 perovskite. In the relevant energy range, there are two distinct sites for high-spin, one for low-spin, and ...

متن کامل

Electronic spin state of ferric iron in Al-bearing perovskite in the lower mantle

[1] We investigate the effect of pressure on the electronic spin state of ferric iron on Al-bearing MgSiO3-perovskite using first-principle computations. Ferric iron (6.25 mol%) and Al (6.25 mol%) substitute for Mg and Si respectively. Five substitution models on different atomic position pairs are examined. Our results show that spin state transition from high spin (HS) to low spin (LS) occurs...

متن کامل

First-principles study of intermediate-spin ferrous iron in the Earth’s lower mantle

Spin crossover of iron is of central importance in solid Earth geophysics. It impacts all physical properties of minerals that altogether constitute ∼95 vol% of the Earth’s lower mantle: ferropericlase [(Mg,Fe)O] and Fe-bearing magnesium silicate (MgSiO3) perovskite. Despite great strides made in the past decade, the existence of an intermediate-spin (IS) state in ferrous iron (Fe2+) (with tota...

متن کامل

Electronic spin state of iron in lower mantle perovskite.

The electronic spin state of iron in lower mantle perovskite is one of the fundamental parameters that governs the physics and chemistry of the most voluminous and massive shell in the Earth. We present experimental evidence for spin-pairing transition in aluminum-bearing silicate perovskite (Mg,Fe)(Si,Al)O(3) under the lower mantle pressures. Our results demonstrate that as pressure increases,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012